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Soliton Stability in a Generalized
Sine-Gordon Potential

Rubén Cordero1,3 and Roberto D. Mota2

We study stability of a generalized sine-Gordon model with two coupled scalar fields in
two dimensions. Topological soliton solutions are found from the first-order equations
that solve the equations of motion. The perturbation equations can be cast in terms of a
Schrödinger-like operators for fluctuations and their spectra are calculated.
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1. INTRODUCTION

It is well known that in field theories when a discrete symmetry is broken
domain walls arise. Domain walls have been observed in condensed matter, for
example, in liquid crystals. In the cosmological context, domain walls could appear
in phase transitions in the early universe and have some important consequences
(Vilenkin and Shellard, 1994).

In the domain walls context, there exist classical static configurations with
finite minimum localized energy, see for instance (Bogomol’nyi, 1976; Prasad,
1975). Several authors have been interested in coupled scalar fields systems due
to their important physical properties. For example, Peter (1986) showed that
surface current-carrying domain wall arises when a bosonic charge carrier is cou-
pled to the Higgs field forming the wall. Bazeia et al. (1997) and Riazi et al.
(2001) studied the linear stability of soliton solutions for a class of systems of
coupled scalar self-interacting fields following the standard approach of classical
stability.
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Politécnico Nacional 2580, Col. La Laguna Ticomán, Delegación Gustavo A. Madero, 07340 México
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Besides, as it was extensively shown, Witten’s supersymmetric quantum me-
chanics (Witten, 1981) is the most recent way to study solvable as well as pertur-
bative problems (Witten, 1981; Lahiri et al., 1990; Cooper et al., 1995; Junker,
1996; Cooper et al., 2001).

Some systems of coupled scalar fields present soliton solutions and their
linear stability have been addressed by means of the SUSY QM formalism in a
2 × 2 superpotential realization (Bazeia et al., 1995; Bazeia and Santos, 1996; de
Lima Rodrigues et al., 1998; Dias et al., 2002). The superpotential satisfies the
Riccati equation associated to the perturbation Hessian and establishes the stability
of the system. This fact is because of the corresponding supersymmetric operators
factorize the perturbation equation and automatically ensure non-negative equal
perturbation frequencies (Bazeia and Santos, 1996).

The sine-Gordon system has been applied to a wide class of physical problems
like propagation of crystal dislocations, two-dimensional models of elementary
particles, propagation of splay waves in membranes, Bloch wall motion in magnetic
crystals and magnetic flux in Josephson lines (Rajaraman, 1982). It is well known
that this system in (1 + 1) dimensions has classical soliton solutions and their
non-dissipative properties could be explained like a finely-tuned balance between
self-interactions and dispersion.

A generalization of sine-Gordon system with two coupled real scalar fields
showed an important and rich behavior (Riazi et al., 2002). The potential of
this system consists of a product between a trigonometric and polynomial
functions of the fields. Depending on the rest energies and the boundary con-
ditions, the spectrum of solitons could be stable, unstable or meta-stable. The
former classical stability analysis was established by means of numerical
analysis.

Another generalization of coupled sine-Gordon model has been given as an
example of continuously degenerate soliton (Shifman and Voloshin, 1998). In
contrast to the models mentioned earlier, this model involves a highly coupled
self-interacting fields with non-polynomial form. This model has richer structure
and dynamics and deserves further analysis.

In this paper we advocate to the study of linear stability approximation of
the generalized sine-Gordon model proposed in (Shifman and Voloshin, 1998).
In Section 2, we give the model consisting of two couple real scalar fields, we
present the first-order differential equations that minimize the energy for the fields
and find a particular solution of them. In Section 3, we show that the stabil-
ity equations can be analyzed in terms of SUSY QM formalism and reduce the
problem of stability to solve a Riccati equation associated to the perturbation Hes-
sian. In Section 4, we find the spectra of the fluctuation operator and explicitly
show the stability of the soliton solution. Finally, we give the conclusions of this
work.
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2. THE MODEL

In this paper we consider the generalization of the sine-Gordon model for
two scalar interacting fields given by the following Lagrangian

L = 1

2
(∂µ�)2 + 1

2
(∂µ X )2 − 1

2
cos2 �(1 + α sin X )2 − 1

2
cos2 X (1 + α sin �)2,

(1)

where α is a dimensional parameter, and all other dimensional parameters are
set equal to unity. For 0 ≤ �, X ≤ 2π , the potential in (1) has three minima at
� = X = π/2; � = π/2, X = 3π/2 and � = X = 3π/2, one maximum at � =
0, X = π/2, and three saddle points at � = π/2, X = π ; � = π/2, X = 0 and
� = 3π/2, X = π/2.

The equations of motion for the model (1) are the usual ones:

�� + ∂

∂�
V = 0, �X + ∂

∂ X
V = 0 (2)

which become for a static configurations

�′′ = −cos� sin �(1 + α sin X )2 + α cos2 X (1 + α sin X ) cos � (3)

X ′′ = −cosX sin X (1 + α sin �)2 + α cos2 �(1 + α sin �) cos X, (4)

where primes means derivatives with respect to space variable.
The form of the energy of the system can be written as

Es =
∫ ∞

−∞

[(
d�

dz
− W�

)2

+
(

d X

dz
− WX

)2
]

dz +
∣∣∣∣
∫ ∞

−∞

∂

∂z
W [�(z), X (z)]dz

∣∣∣∣
(5)

where W [�(z), X (z)] is the corresponding superpotential of (1), which turns out
to be

W = −sin� − sin X − α(sin �)(sin X ). (6)

Shifman and Voloshin (1998) referred this superpotential as a generalization of
the sine-Gordon model. It is periodic in both � and X ; for α = 0 it describes
two decoupled fields, representing each of them a supergeneralization of the sine-
Gordon model. If α 
= 0 the fields � and X start interacting with each other. Inside
the periodicity domain 0 ≤ �, X ≤ 2π , −W has one maximum at � = X = π/2,
one minimum at � = X = 3π/2 and two saddle points at � = π/2, X = 3π/2
and � = 3π/2, π/2 at least for small values of α.

The lower bound for the energy is achieved if � and X satisfy

�′ = −cos�(1 + α sin X )

X ′ = −cosX (1 + α sin �). (7)
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For the case X = π/2, we have

d�

dz
= −cos�(1 + α), (8)

whose solution is

� = −tan−1

(
c2ez(1+α) − e−z(1+α)

2

)
. (9)

Other possible solution of equations (7) is obtained for X = 3π/2 and the solution
is obtained from the former equation by substituting α by −α. Interchanging the
fields X and � in the last equations we get the solution for � = π/2 or � = 3π/2.

We attempted to find the general solutions of the coupled equations (7) by
the trial orbit method of Rajaraman (1977); however, because of the difficulty of
the system we were unable to find them.

3. STABILITY EQUATIONS AND SUSY QM

We are interested in determining the classical stability of this system under
small fluctuations around a static configuration. In order to investigate the linear
stability of the interacting fields we proceed in the usual way by considering small
perturbations around the static scalar fields

�(z, t) = �(z) + η(z, t) (10)

X (z, t) = X (z) + ξ (z, t). (11)

The stability equations can be written in a Schrödinger-like equation

Sl�n = ωn
2�n (12)

where n = 0, 1, 2 . . .. The differential operator Sl is given by

Sl =
(− d2

dz2 + ∂2

∂�2 V ∂2

∂�∂ X V

∂2

∂�∂ X V − d2

dz2 + ∂2

∂ X2 V

)
|�=�(z), X=X (z)

≡ − d2

dz2
I2×2 + VPH (13)

and the two components wave functions are

�n =
(

�n(z)

Xn(z)

)
, (14)

where we have expanded the fluctuations α(z, t) and β(z, t) in terms of normal
modes

η(z, t) =
∑

n

anηn(z)eiωn t (15)

ξ (z, t) =
∑

n

bnξn(z)eiωn t . (16)
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Notice that in the case when the differential operator Sl is diagonal, the perturbation
fields could be expanded in terms of different frequencies.

The SUSY QM approach to linear stability consists in realizing a 2 × 2-matrix
superpotential, which is obtained by solving the Riccati equation associated to the
perturbation Hessian VPH

W2 + W′ = VPH . (17)

The existence of W that satisfies this equation ensures the existence of the first
order self-adjoint differential operators

D± = ±I
d

dz
+ W(z) (18)

that factorize the operator Sl = D+D−. This fact implies the stability for equal fluc-
tuation frequencies, since 0 ≤ |D−�n|2 = (D−�n)†(D−�n) = 〈D+D−〉 = 〈Sl〉=
ω2

n .
For our case the matrix elements of VPH are given by

(VPH )11 = −(cos2 � − sin2 �)(1 + α sin X )2 + α2 cos2 X cos2 � (19)

−α cos2 X (1 + α sin �) sin �

(VPH )22 = −(cos2 X − sin2 X )(1 + α sin �)2 + α2 cos2 � cos2 X

−α cos2 �(1 + α sin X ) sin X

(VPH )12 = (VPH )21 = −2α cos � sin �(1 + α sin X ) cos X (20)

−2α cos X sin X (1 + α sin �) cos �,

The solution of Riccati equation (17) for configurations satisfying equations (7) is

Wmin =
(

(1 + α sin X ) sin � −α cos � cos X

−α cos � cos X (1 + α sin �) sin X

)
. (21)

For the sector X = π/2, the fluctuation potential term becomes

Vmin =
(

−(1 + α)2(cos2 � − sin2 �) 0

0 (1 + α sin �)2 − α cos2 �(1 + α)

)
,

(22)

so, the corresponding superpotential is

Wmin =
(

(1 + α) sin � 0

0 (1 + α sin �)

)
. (23)

We point out the existence of another self-adjoint and non-negative second-
order differential operator S′

l = D−D+ which plays the role of the supersymmetric
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partner operator of Sl in SUSY QM. The operators Sl and S′
l have the same energy

spectrum except for the ground state.

4. SPECTRUM OF THE SECOND ORDER
FLUCTUATION OPERATOR

The study of stability for the general case is very difficult. However, in order
to have analytical results in the case of X = π/2 (the results we are going to
obtain are automatically true for � = π/2), we take the particular case of c = 1
in Equation (9) i.e. tan � = sinh z(1 + α). Since the differential operator Sl is
diagonal we could have different fluctuation frequencies that can be determined
from the perturbation equations

− d2ηn

dz2
− (1 + α)(2sech2z(1 + α) − 1)ηn = ω2

nηn (24)

and

−d2ξn

dz2
+ (

1 + α2 − 2α tanh z(1 + α) − α(1 + 2α)sech2z(1 + α)
)
ξn = ω2

nξn.

(25)

Performing the variable change y = z(1 + α), Equation (24) transforms to the
Rosen–Morse equation (Morse and Feshbach, 1953). We find that the fluctuation
frequencies are

ω2
n = (1 + α)2(1 − (1 − n)2)2. (26)

However the bound states exist only for n < 1 (Morse and Feshbach, 1953). Thus,
the ground state η0 = (1 + α)sechz(1 + α) with eigenvalue ω0 = 0 is stable.

By means of the same variable change the Equation (25) can be cast as a
Rosen–Morse equation whose eigenvalues are

ω2
n = 1 + α2 − (1 + α)2

[(
3α + 1

2(1 + α)
− (n + 1/2)

)2
]

− 4α

(1 + α)2
(

3α+1
2(1+α) − (n + 1/2)

)2 (27)

which are the frequencies for possible bound states. However, for this case we
have no bound states because n must be less than zero for both α > 0 and α < 0
(Morse and Feshbach, 1953).

This means that the solution configurations are stable under small perturba-
tions around X = π/2, tan � = − sinh z(1 + α) ( the same is true for � = π/2,
tan X = − sinh z(1 + α)).
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5. CONCLUSIONS

We have applied the SUSY QM formalism to study the linear stability of the
Shifman generalization of the sine-Gordon model. We have shown that stability
for soliton configurations is ensured by solving the Riccati equation for the 2 × 2
superpotential associated to the non-diagonal perturbation Hessian. The spectrum
of the second-order fluctuation operator for the general case is very difficult to
find it. Thus, we have got the fluctuation spectrum for the particular case X = π/2
(or � = π/2), and we have found analytical solutions and explicitly found that
the system is stable. We notice that Equations (24) and (25) can be reduced to
a Rosen-Morse equation. On another hand, the Rosen-Morse equation have been
studied from the shape invariance approach of SUSY QM (Dutt et al., 1988). Thus,
each one of the Equations (24) and (25) has a scalar superpotential. Therefore, we
have given a complete treatment of linear stability for the generalized sine-Gordon
superpotential from the point of view of SUSY QM.
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